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S O M E  P R I M A L  P R O B L E M S  OF T H E  A X I S Y M M E T R I C  T H E O R Y  OF E L A S T I C I T Y  

F O R  S P A C E  W I T H  A FLAT SLIT B O U N D E D  B Y  A CIRCLE 

L. G. S mir n ov  UDC 517.944 

We consider the first and second primal problems of the axisymmetric theory of elasticity for 
space with a round slit and a mixed problem in which forces are specified on one side of the slit 
and displacements are specified on the other side. The problems reduce to conjugation problems 
for generalized analytic functions on rectilinear segments, whose solution is obtained in closed 
form. 

Reducing plane elastic problems for cracked bodies to conjugation problems for complex analytic 
functions at the crack edges is an effective method of solution. In some cases, spatial axisymmetric elastic 
problems with a flat boundary can be reduced to conjugation problems for analytic functions [1] or to 
conjugation problems for p-analytic functions [2]. Using generalized analytic functions (GAF) in problems of 
this type (space with a circular boundary of conditions, etc.) is also effective. Below, we give a solution of 
the primal elastic problems for space with a round slit in an axisymmetric case where forces or displacements 
are specified at the edges of the slit or forces are specified at one edge and displacements are specified at the 
other edge. 

For the elastic characteristics we use the following designations: G is the shear modulus and u is 
Poisson's ratio. The round slit of radius r is in the plane z = 0 (z, r, and 0 are cylindrical coordinates). It is 
assumed that  forces or displacements are specified at the edge of the slit. Using GAF, we write the boundary 
conditions at the edge of the slit [1]: 

[ff~'(T)] + - [~ ' ( r )1+  = O'~ + iT"z~ = f •  (T e L• (1) 

o r  

~[~(~)]• - [ ~---~]• = 2 G ( ~  + i ~ )  = g~(~) (~ e L• (2) 

Here r  and ~( t )  are generalized analytic functions over the entire plane, except on the segment L, z = 0, 
0 < ]r I < c, a-  and %r are the normal and tangential stresses, respectively, uz and u~ are the displacements 
along the z and r axes, L• denote the lower and upper sides of the slit, respectively, ~e = 3 - 4 u ,  and t = z+ir .  

The differentiation operation for the GAF is defined by 

~ '( t )  = tl~mt [ ~ ( t l ) -  Re ~ ( t ) -  ( i r / r l ) Im ~ ( t ) ] / [ z -  Zl + i ( r -  rl)]. (3) 

In particular, ~ ( t )  = O~(t)/Oz. The stresses and displacements are given by the formulas 

az + a~ + ae = 4(1 + ~)Re~ ' ( t ) ,  ae = 4~,Re~'( t)  + 2Gut~r, 

~ + iTzr = ~'(t) - 2ze,,(t)  - r 2c (~z  + i~r) = ~ ( t )  - 2ze,(t) - ,r(t). 

Taking into account tha t  k~(~-) = @(~) for 7- = ir, we write conditions (1) and (2) in the form 

(4) 
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[*'(r)] • - [ * ' ( r ) ] •  = [*'(r)] • - [ ~ ' ( - r ) ]  • = f •  (~) 

~[~(r - [ ~ ( r  = ~ •  - ~ • 1 6 2  = ~•162 (6) 

Using the definition of the derivative (3), we differentiate both sides of equality (6) along the slit edge assuming 
tha t  the derivatives exist up to the edge. As a result, we obtain [~r -- ff/• ---- (g+(r)) '  ---- g~(T), 
where g~(r )  = 2 G ( d u r ~ / d r  § u~r / r  - i d u ~ z / d r ) .  

Denoting ~(t) = (b'(t) and ~b(t) -- ~ ' ( t ) ,  instead of (5) and (6) we have 

~;• - g,• = f•  a~•  -) § f ; •  -- g~(~-) (v e L). (7) 

Let t = z § i r  and r = i r  be the interior and boundary points. The function W~ (t) = r  is also a 
GAF of the class considered here. For t --+ §  § i r ,  we have - t  --* - 0  - i r .  Hence, 

~:-(-~) = ~ - ( - i r )  = ~:x+(~) = ~,+(~), r = : + ( - ~ )  = ~ 1 ( ~ )  = ~ - ( ~ ) .  (8) 

Thus, conditions (7) are written as 

q:• - ~7(~-) = f•  ~;~:(7) § W~(c) = g7(7-). (9) 

Adding together and subtracting the first two equalities of (9), we obtain 

[qD(T) - -  /~ I (T) ]  + § [~rg(T) - -  / ,~I(T)]--  = f+(v)  + f - ( ' r )  = fl(T), 
(10) 

From (12) and (13), we obtain 
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T 1/ 
[~P(T) - -  ~ I ( T ) ]  -t- § [ ~ ( T )  - -  ~ ) I ( T ) ] - -  ~--- ~ l r l  [~§ - ~ - ( ~ ) ] M - ( ~ ,  ~ )  do, (14) 

[~(T) § ~I(T)] + - [~(~) + ~i(~)]- = f+(~) - f-(~) = f2(T). 

In the plane with the hole intersecting the : axis, the regular GAF g(t) and ~l (t) outside the hole and 
vanishing at imSnity are written as [I] 

t 

/t (11) 

" V)l(t) = S(~I . ( ( ) )  = ;rlr I ~ l . ( ( ) J l l ( ~ , t ) d ~ ,  

E 

where .~,l(~,t) = x / ( ~ -  t ) / ( ~ -  t) and ~7.(~) and ~bl.(~) are functions that  are holomorphic in the region D 
and vanish at infinity, for which the following equality holds: lim ~ . ( ~ )  = lim ~bl.(~) = 0. In relation 

Ir ]~l-*oc 
(11), it is assumed that  the line of integration is below the slit and the line of branching of the radical M(~, t). 

For the indicated behavior of the functions ~P.(C') and ~bl.(() at infinity, the value of the integral in 
(11) does not depend on the method of integration. Therefore, for t --~ - 0  § i r  we can integrate over the 
upper side of the slit L+: 

T 

r ~ 

- ~lrl ( ~ , ( ~ ) - ~ I , ( ~ ) ) + M - ( ~ , , ) d ~ .  (12) 

Here allowance is made for the equality M+(a ,  ~-) = - M - ( c ,  v). For the lower side of the slit, we have 
T 

[~(r)-~, l (r)]-= ~lrl (~.(G)-~.(~))-M-(c~,T)d~. (13) 



where ~-~(a) = ~ ( c r )  -O~ , (a ) .  Similarly, we obtain 
T 

[~(~-) + O~(r)] + - [~(r) + Ol(r)]- = ~rlr I [A+(a) + A-(~)]M-(cr, ~-) d~, 

(15) 

a•  = ~,~(~) + ~,(~). 
The operator S -1, which is the inverse of S, has the form [1] 

/ { 1. s i g n ( I m ~ I m t ) > O ,  
1 d (b(t)M(~, t)h(t ,  ~) dr, h(t, ~) = 

S- l (q~(t))  - 2 dC ' -1 .  s i g n ( I m ( I m t )  < 0. 

Applying the operator S -1 to both sides of equalities (14) and (15), we obtain the following conjugation 
problems for the analytic functions Ft(C ) and A(ff) [3]: 

f2+(() - f2 - ( ( )  = - S - x ( f ~ ( r ) )  = F~(o-), A+(~ ) + A-(~) = -S -~ ( f2 ( r ) )  = F2((r). (16) 

and ~Pl,(() = Y),(-() can be expanded in the series p , ( ( )  = 

coefficients obey the equalities 

For sufficiently large ]~t, the functions ~ , ( ( )  
oc oG 

an~ -~ and ~Pl,(~) = ~ b ~  -~, where the 
n = l  n = l  

al = b l  = 0 ,  ~ a 2 - b 2  = 0 .  (17) 

Indeed, using the representations (I)(t) = S(Vz0(~)) and q2(t) = S(~b0(~)), at infinity we obtain the 

expansions qoo(~) = ~ a~ - ~ n  , ~Po(~) = ~ b ~ , where ~a  ~ + b ~ = 0 [2]. Then, ~(t) = tiP'(t) = S(qz~(~)) 
n = l  n = l  

and ~b(t) = S('*o(~)). On the symmetry axis [2], 

~z(z) = ~;(z) sign (z) = sign ( z ) ( - a ~  2 - 2a~  3 - . . . ) ,  

O(z) = ~ ( z )  sign (z) = sign ( z ) ( - b ~  2 - 2b~ 3 - . . . ) .  

Introducing '1 (t) = w( - t ) ,  we have 

' 1  (z) = sign ( - z ) ( - b ~  2 - 2b~ 3 - . . . )  = sign (z ) (b~ 2 - 2b~ 3 + . . . ) .  

At the same time, 

9~,(~) -= a2/~ 2 + a3/~ 3 + . . . ,  .W/l,(() ---- b2/(  2 -4- b3/(  3 + . . . .  

~(z)  = s ign(z ) (a2/z  2 + a3/z  3 + . . . ) ,  ~31(z ) = s ign(z) (b2/z  2 + b3/z 3 + . . . ) .  

Comparing these expressions, we have a2 = - a  ~ b2 = bl ~ and, hence, a~a2 - b2 = 0. 
The solution for the functions ~(~) and A(~) is written as 

f c N +  co 1 Fl(r dcr + ~ = LI(FI(cr)), 
f ~ ( ~ ) = ~  ~ _ (  ~-2+c 2 

L (18) 

X(o)  / -  F2(o) 
A ( ~ )  - -  / d o  -~- X ( ~ ) c 2  =- L 2 ( F 2 ( o " ) ) ,  

2 . /  _ x + ( ~ ) ( ~  - ~) 
L 

where X(~) = (~2 + c2)-1/2, ck are constants, and the second terms on the right sides of equalities (18) are 
solutions of the corresponding homogeneous conjugation problems (16). The coefficients ck are easily found 
using conditions (17). Taking into account the formula for displacements (4) using the operator S, it is easy 
to verify that  solutions of the form (18) satisfy the conditions of continuous displacements at the points 
t = •  and finite potential energy. 
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We write the specific form of the unknown coefficients (k = 0, 1, and 2). Since 

~ . ( 0  = ( ~ ( 0  + A ( O ) / 2 ,  r162  = (A(O - ~ ( 0 ) / 2 ,  

then, writing the integrals in (18) for [(] > c in the form 

I., (.)/(._ c)..: _;-1 S ., (.)/(i_ <-,)..:- v.(/., (.).-d.)< -n-1 , 

L L n = 0  L 

f F2(a)l(X+(a)(o. - ()) da = _r f F2(o.)l(X+(0.)(1 _ o.r do" 
L L 

:- v. 
n=O L 

from equalities (18) we obtain the equations 

al = lira r + A ( O ]  = c ~ + c 2 -  FI(~)d~  = O, 

L 

' i  b~ = l i r a  ( [A(O - o ( 0 ]  = c2 - c ,  + 777~i F , ( o ) d ~  = o ,  

L 

zea2 - b2 = lim (7[~e(f~(() + A( ( ) ) /2  + (fi(() - A(())/2] 

Hence, 

i ~ e + l  ~ e - 1  i se+14zri F l ( a ) a d a  + - - - - ~ c o - - - 4 z r i  F~ 
L L 

' ( i  i ) i co = ~ /  F1 (a)o. da  + ~e -  1 1 z e + l  F 2 ( a ) / X + ( a ) d a  ' c l =  ~ i  Fl (a)da ,  c 2 = 0 .  
L L L 

As an example, we consider the case where uniform pressure p is applied to the sides of the cut. In this 
case, Fl(a)  = 2p and F2(a) = 0 and from formulas (18) it follows that  co = c2 = O, Cl = 2pc/zr, and, hence, 

p ( - ic 2pc ( 
f~(0 = --Trz In ~ + --~r (2 + c-------- ~ ,  A ( 0  = O. 

Consequently, 

p ( - i c  pc ( p ( ( - i c  ic i~'ic ) 
~ ; . ( ( ) = - r  zr ( 2 + c 2  = ~  l n ~ + ~ +  . 

Since lim (I).(() = 0 [1], for ~ . ( ( )  : f p . ( ( )  d(,  we obtain 
[r162 J 

P ( 2 i c + r  ( - i c ~  

Denoting A(t)  = Re ((b(t)), B(t) -- Im (@(t)) and taking into account that  ~ . ( ( )  = -~) . ( ( ) ,  we write formulas 
(4) as 

az + ar + aO = 4(1 + v)A'(t) ,  0.e = 4vA'(t)  + 2(1 - 2v)B(t)  + zB ' ( t ) / r ,  

az = 2A'(t) - 2zA"(t) ,  

From formulas (11) we obtain 

0 2 B ( t )  (t = z + i t ) .  
7rz ---- 2z Oz 2 
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where 

A'(t)  = Re (~ '( t ))  - 

1 
Jl ( t )  = =1~1 

1 Re ( i ,it, (~) d<)=Jl(t)+J2(t), 
f 

- - - -  Re 

7" 

i p r ) 
- - r  

J 2 ( t )  = - - -  

T 

- - ? -  

(t = z + ir, ( = x + iy, x = z) 

and integration is performed on the straight segment (z - iy, z + ig). Using the residue theorem, for the 
corresponding branch of the radical, we obtain 

J2(t) = _ c p  Re I 
~r v / r  2 + (z + ic) 2" 

To calculate the integral, J1 (t), it is convenient to differentiate with respect to the parameter  c and 
then use the residue theorem. Integrating over c, we obtain J1 (t) = -(p/Tr) Im [ln(ic + z + x / r  2 + (z + ic) 2 )]. 
Thus, 

A'(t)  = -PcrIm l n ( i c + z + v / r  2 + ( z + i c )  2) + v / r 2 + ( z + i c )  2 " 

Similarly, for B(t )  we obtain 

pr [ z -  ic ] 
B( t )  = hn (~(t ) )  = -~-~Im in (ic + z + v /r  2 + (z + ic)" ) + ~ v / r  2 + (z + ic) 2 . 

For z - 0 and r > c, we obtain the well-known solution [1] 

c) 
az=--Tr  V / ~ - -  c 2 arcsin r ' a o =  --Tr c 2 - arcsin r 7 r r 2 ~  ' 

(1 + 2u)p { C c~ (1 - 2u)pc 3 
ar = (1 + 2u)az - a0 = ~, arcsin ) + 

The conjugation conditions for the second boundary-value problem have the form 

~ ( r  + V7(r = g~(r (r e r). 

Adding together and subtracting equalities (19), we obtain 

[~(~)  + ~1(~)]+ + [~(~)  + r = go (v ) ,  [ ~ ( ~ )  - r  - [ ~ ( ~ )  - ~ ( - ) ] -  = 92(~) ,  

(19) 

gO(T) = g+(r)  + gi-(T), g2(T) = g+(T) -- g~ (r)  (T e L). 

As in the case of the first primal problem, for the functions f~(() = ~e~.(~)§ and A(() = ~ . ( ~ ) - r  
we obtain the conjugation conditions 

~+(a) - a -  (a )  = - s  - 1 ( g o ( v ) )  = G l ( a ) ,  (20) 

A+(a) + A - ( a )  = --S-I(g2(T)) -~- G2(o) (a E L). 

To satisfy conditions (17), as in the first boundary-value problem, it suffices to use the solutions ~(~) 
and A(~) in the form 
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1 c C+co 
a(~)= 577~i ~ _ ~  + i:  +c---- r ,  

L 

1 f X+(~)a2(~) d~ c: 
A(() - 2rriX(() 7 - - ~  q- X(~)' X(~) --- ((~ - ic)(~ + ic)) 1/2. 

L 

The constants Cl and c2 are easily determined: c2 = 0 and cl = ~ G1 (a) da. 

L 
Since [1] 

as = - P / ( 4 ~ ( 1  + ~)), 

where P is the resultant of the forces applied to the slit, we can show that 

c o =  2rr( l+~e)  + ~ /  X+(a)a2(er)da+~7~i G,(cr)ada. 
L L 

Therefore, for the resultant P ,  we can write the equality 

f , + ir~r)]rdr 
L 

(21) 

= - 2 =  - - - m , _  

= _tree / S [ ( 1  - ~e)(fl+(c) - f~_(c)) - (I + ~e)(A+(a) - A_(a) ) ] r  dr. 
L 

We consider another mixed boundary-value problem. Let displacements be specified on the lower side 
of the slit and forces be specified on the upper side of the slit. In this case, the conjugation conditions have 
the form 

~':~-(T) -1- C t ( r )  = gl(T), ~#+(r) -- ~bi-(r ) = f (r)  (r �9 L), (22) 

where gl (r)  and f (r)  are specified functions. 
Multiplying the first of equalities of (22) by - i / x / ~  and then by i / v ~  and adding, respectively, the 

right and left sides of the resulting equalities to the right and left sides of the second equality of (22), we have 

[r -- ~ ~.~1 (T)] + -  iV/~[~(T) ~ ~/)I(T)]-- = f ( T ) - -  ~gI(T)"~- fl(T), 

+ - 

Performing calculations similar to the ones for the first and second boundary-value problems, for the analytic 
functions D(r -- ~.(r  (i/v/~r and A({) -- ~.(~)-k ({/v~)~,.({), we obtain the conjugation problem 

f~+(a) - i v~ f~- (a)  = -S-I (S , (r ) )  = FI(T), (23) 

A+(a)  + i v ~ A - ( a )  = -S- l ( f2(r ) )  = F2(r). 

From the equalities ~#,(~) = qo,(~) and ~bi,(~) = g;1,(~) it follows that 

A(~) = ~(~) .  (24) 

Therefore, the solutions of the conjugation problems (23) have the form 12(~) = LI(FI(a)) and A(~) = 
L2 (F2(a)), where, with allowance for (24), 

136 



Xj(r f f(a)da 
Lj( f (a)) :  2~i X+(a)(~-()  

L 

+x~(oPj(O, 

Xl(r162162 ic) ~-1 ( j = l ,  2); 

(25) 

R 1 ( ~ ) = ( c 1 r 1 6 2  - ic), P 2 ( < ) = ( ~ 2 < + c 3 ) / ( ~ + i c ) ,  

~/= 3/4 + in w/(47ri), Cl ---- C2 = O, CO = C3, (26) 

Re[(.-{v/~)c0] : Re[(.+ iv/~)c3] : Re[(.+ ivi~)l(2zi)i Fl(o)IX:(.)d(7]. 
L 

Denoting the resultants of the forces on both sides of the slit and on the upper side by P and PI, respectively, 
and taking into account (21) and (26), we obtain 

Re~ : .e[~ f F, (.)IX,+(.) .. 
L 

Indeed, 

P 
4~(I +~e)]" (27) 

P 1 . 

Ft(cO/X+(~r) da - ~ F2(a)/X+(a) da + co + C3]; 

L L 

whence formula (27) follows. 
For the resultant P, we write the equality 

P : 2rc f (~r+-a:. )rdr = 2~r i ~ + r d r -  27r f Re(~" - 9~_)rdr 
L L L 

: P, - 2~ f Re [s((~,(~))_ - (~1,(~))+)? d~ 
L 

(r - ic 
L 

~0 + x{- (~) ~ )  

where 

-{ , / -~(a?(~) - a~+(~) + Xl+(~) ~-c~ ~r x f ( a )  _%_T~)],.d,. , c o  (28) 

_ x1(r [ FI(~) d~ al(<) 
2~i J x+(~)(~- <) 

L 

This formula, together with (26) and (27), allows us to find co and P. Using a solution in the form (25), it 
is easy to verify that the displacements are continuous and the potential energy is finite. 

To calculate (I)(r and ~(r we use the integration formula for GAF [1]: 
t 

1 
_ 

BI �9 (t) = ~ L~I+ ,_-=z, j~(~)d~ + W' 
to 

t 

1 S . - .  (1 - / -2~) %hi ( - r )  dr  �9 (~) : ~ [(i + + - 
to 

T-~ i ] B, 
-~--~)Wl(-r)d~ +A2+--=.r  
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Here integration is performed along a curve that  connects a certain point to with the point t (Im t > 0) and 
does not intersect L, and Aj and Bj (j = 1, 2) are real constants for which the following relation [1] holds: 

seB1 + B2 = 0. 

One of the constants Aj (j = 1, 2) can be specified arbitrarily, and the second is determined from the known 
displacements at any point. Without  loss of generality of the solution, we can set B1 = B2 = 0. For Im t < 0, 
the functions ~(t)  and qY(t) can be determined from the formulas ~(t)  = ~(t-) and ~(t)  = ~(t-). Thus, all the 
required functions are obtained. 

The author is grateful to Yu. I. Solov'ev for comments and remarks, which improved the article. 
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